
PRICES SUBJECT TO (lANGE

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151 i

V74-29545

(NASA-CR-1392 1 2) GLOBAL PARALLEL

UNIFICATION FOR LARGE QUESTION-ANSWERING

SYSTEMS (Maryland Univo) 3 p HC $-2Uncl5CSCL 09B unclas
G3/0 8 54894

Technical Report TR-307 June, 1974
NGR 21-002-270

GLOBAL PARALLEL UNIFICATION

FOR LARGE

QUESTION-ANSWERING SYSTEMS

by

J. Gary Auguston and Jack Minker

Department of Computer Science
University of Maryland

College Park, Maryland 20742

The support of the National Aeronautics and Space Administration, under
NASA grant NGR 21-002-270 is gratefully acknowledged.

TABLE OF CONTENTS

PAGE

1. Introduction 1

2. Related Work 1

3. i-Representation - 3

4. Extended n-Representation 7

5. Substitution Set Number of Base - 9

6. Data. Structure for Global Representation , 10

6.1 Index Level 11

6.2 Placeholder Variables 11

6.3 Free Variables 12

6.4 Function Letter 13

7. Global-Parallel Unification 14

7.1 Basic Properties of Unification 15

7.2 The Unification Process 17

7.3 Unification Algorithm 18

7.4 Indirect Restriction of Free Variables 21

8. Advantages and Disadvantages of Global Parallel Unification 24

9. Heuristics 27

9.1 Argument Selection 27

9.2 Unifier Selection 29

10. Conclusion 31

Acknowledgement 33

References 34

Appendix 36

ii

ABSTRACT

An efficient means of storing data in a first-order predicate cal-

culus theorem-proving system is described. The data structure is oriented

for large scale Question-Answering Systems. An algorithm is outlined

which uses the data structure to unify a given literal in parallel against

all literals in all clauses in the data base. The data structure permits

a compact representation of data within a QA system. Some suggestions are

made for heuristics which can be used to speed-up the unification algorithm

in such systems.

1. Introduction

In recent years much research has been conducted in applying formal

theorem proving techniques to produce deductive Question Answering (QA)

systems [5, 6, 9, 12, 13, 14]. Historically, the capabilities of such

systems have suffered deficiencies in producing deep deductions
in an

efficient and timely manner. The systems exhibiting deductive capabilities

that have been developed to date have been shown to operate effectively only with

small data bases. Two major obstacles to handling.large data bases in a

QA system have been the amount of space required to store large numbers

of facts, and the amount of processing time required to search the data

base to find clauses which are capable of resolving with one another.

In this paper we introduce concepts aimed at providing a more effi-

cient means of storing data while at the same time representing data in

a manner which will allow easier processing. A data structure oriented

for large scale QA systems is introduced along with a compact scheme for

the internal representation of data base clauses. A unification algorithm,

using this data structure, which enables unification to be performed
in

parallel across all clauses which have literals complementary to a given

literal is presented. Finally, some suggestions are presented for the

type heuristics which could be used to guide the unification
process in

such a system to a more efficient solution.

2. Related Work

Several papers relate directly to the work described here. Burstall

[3] presented a unification algorithm with a somewhat similar
approach to

the one presented in this paper. He defined an abstraction of a literal

1

for each literal appearing in the data base, representing the structure

of each literal and all variants of the literal. Associated with each

literal was a list of all clauses in which the literal appeared. He then

constructed a tree of abstractions such that all abstractions occurring

below a given node on a tree could be obtained from the abstraction at

that node by a substitution. Unification was attempted with the top

node of each tree. When successful, a subset of all possible resolvents

over the entire data base had been found. However, in order to find all

possible resolvents in the data base, unification had to be attempted at

each node of each tree until a point was found for all paths of every tree

where no unification could be performed successfully.

The system presented in this paper takes the approach of identifying

all clauses within the data base based upon the arguments of the literals

of each clause. Unification is performed globally across the entire data

base one argument position at a time. When a unifiable situation is found

for a particular item at a particular argument position, the clauses which

are unifiable are continued for consideration in the unification process

as long as no non-unifiable situation has been found for those clauses at

a previously processed argument position. Each argument position need be

processed only once by the unification algorithm (as opposed to many times

by the Burstall approach) and after all arguments have been processed all

those clauses, and only those clauses, which do unify with the input clause

have been identified.

The approach presented in this paper is an outgrowth of work by Fishman

and Minker [8] who developed the concept of n-notation in order to per-

mit the introduction of parallel processing to theorem proving. We have extende

2

H-notation slightly (see Section 4) to permit the unification of clauses

across the entire data base for a set of input literals. Additionally,

due to the partitioning of the data base which is imposed by the data

structure, many of the unsuccessful attempts at unification which are

apparent in Burstall's approach can be avoided.

The importance of perfoming searches in a parallel fashion for OA

Systems has also been noted by Sussman and McDermott [17] in their work

on CONNIVER. The approach to parallelism taken by Fishman and Minker

[8], differs from that of CONNIVER. Within CONNIVER parallelism is

achieved by statements in the language of the FOR ALL variety, while

Fishman and Minker embed parallelism into a new representation and

a modification to the Robinson unification algorithm. We describe here

how to exploit the representation devised by Fishman and Minker to

achieve a parallel unification over all clauses in the entire data base,

given a specific literal.

3. H-Representation

In a conventional QA system based upon the first-order predicate

calculus, each separate fact input to, or generated by the system is

represented in clause form. Thus, in a general data base, the fact

that an individual has several children is represented by a series of

distinct clauses. For example, the statement:

[FACT:] "Sam is the parent of Sue, Sally, Bill and Jim" is rep-

resented by the four facts:

3

[3.1] P(Sam, Sue) ,

P(Sam, Sally) ,

P(Sam, Bill) ,

P(Sam, Jim) ,

where the predicate letter P represents parent.

A similar structure would be required to indicate the fact that Mary

is the mother of each offspring. No advantage is taken of the fact that

the general structure (template) of these repetitive clauses is the same

with the only difference being the specific entities substituted for the

two arguments x and y .

Fishman [7] and Fishman and Minker [8] introduced an extension to the

clause form of the first-order predicate calculus to take advantage of such

structural similarities. The representation, called "n-representation",

allows a set of similarly structured clauses to be represented in a single

clause termed a "f-clause."

[3.2] DEFINITION:

A H-clause P is a pair (C,4) where C is a first order

predicate calcuZus clause which contains no constants and 4

is a finite non-empty set of H-substitutions.

A n-substitution set consists of expressions of the form [al,...,an]/v

where the a. are specific constants and v represents a variable in C
1

Each f-substitution set may contain one expression for each variable in C

The constants associated with a variable in such an expression represent the

set of constants which can be substituted for the particular variable in the

represented clause. Any variable occurring in C which has no associated

entry in a particular f-substitution set is universally quantified over

4

that particular H-substitution set. A H-clause (C,4) , where c consists

of the single H-substitution set,

S all,...,alnl/v 1 aml,...,am /v

m
actually represents the set of H n. clauses

i=1

a am

C { /v,..., /v}

C {ainl/ a{alnl/V,., mnm/vm}

For example, consider the n-clause

[3.3] (P(x,y), [a,b,c]/x,[a,e]/y)

This H-clause represents the following six first-order predicate calculus

clauses:

i. P(a,a) iv P(b,e)

ii. P(a,e) v. P(c,a)

iii. P(b,a) vi. P(c,e)

Note that the first-order predicate calculus clauses represented by

a H-clause may not be unique. For example, if the n-clause in [3.3]

had another 1-substitution set consisting of { [b]/x, [e,f,g]/y} the

clause P(b,e) would have two representations in the same H-clause.

The power of H-representation can be demonstrated by constructing a

H-clause to represent the clauses in [3.1]. The resultant H-clause would

5

be as follows:

[3.4] (P(x,y), {[Sam]/x,[Sue, Sally, Billy, Jim]/y})

The additional facts that Mary is also a parent of these children can be

represented by simply expanding the substitution component for x to in-

clude Mary.

[3.5] (P(x,y), {[Sam,Mary]/x,[Sue, Sally, Bill, Jim]/y})

Fishman and Minker also introduce extensions to unification, resolu-

tion, and factoring which apply to H-clauses. They point out that each

inference step between a pair of H-clauses in a deductive proof is

equivalent to performing the same step in parallel across all the individ-

ual clauses represented by the H-clauses. Thus, the meaningful charac-

teristics of a particular inference system (e.g., completeness, soundness)

are preserved when operating on f-clauses.

The value of f-representation to deductive QA systems is twofold;

parallelism in operation and reduction in storage requirements. The avail-

ability of parallelism is inherent in the structure of the H-clause. By

unifying H-clauses one can achieve the work of many times the number of

similar unifications that would have had to be performed on the corres-

ponding first-order predicate clauses. While a H-unification may be a

somewhat lengthier process than a single standard unification, the overall

time advantage of H-unification will become quite apparent in any system

that has even a modest degree of clauses which can be correlated to a

single template.

As can be seen by the above examples, use of n-clause representation

in a QA system will help reduce the proliferation of clauses within the

data base. A great deal of savings in space can be realized in storing the

6

basic data clauses of the system. More significant, however, will be the

savings introduced at each level of deduction, as the number of n-clauses

in the system will tend to grow more slowly.

4. Extended 1-Representation

The H-representation presented in Section 3 did not attempt to take

advantage of the structural similarity between literals which have differing

predicates. We provide in this paper an extension to n-representation to

take advantage of this similarity.

[4.1] DEFINITION:

An extended n-clause is a pair (C,4) where C is a first

order predicate calculus clause which contains no constants

where each literal of degree n is represented as an n+l tuple

and 4 is a finite non-empty set of H-substitutions.

A literal of degree n is represented by including the predicate letter

in an n+l tuple. Such a literal will be said to have degree n , but the

associated tuple will have n+l argument positions. The predicate letter

will be considered to be in argument position one (of the tuple) and the i -h

argument of the predicate letter will be in argument position i+l.

For example, the n-clause in [3.1] would be represented in extended

H-notation as

[4.2] ((,x,y),{ [P]/, [Sam]/x, [Sue, Sally, Bill, Jim]/y})

By definition, each of the n positions in the template portion of a

literal of an extended H-clause can represent only one type of data item;

it must represent either a variable for which there is a replacement set

in the associated substitution set (a placeholder variable), or a variable

for which there is no replacement set in the substitution set (a free var-

iable) or it must be a function symbol along with its associated arguments.

7

The first argument position of any template is only permitted to be a free

variable since this represents the predicate of the literal. Note that

although we allow a free variable to appear in the predicate position, we

are not attempting to generalize the concepts presented here to second-

order logic.

Extended n-representation provides the capability of representing

axiom schemas in the data base. For example, consider the transitivity

relationship which can be represented in the first-order predicate cal-

culus as:

[4.3] P(x,y) A P(y,z) = P(x,z)

Changing this to clause structure we arrive at:

[4.4] %P(x,y) v -P(y,z) V P(x,z)

This clause would be represented in extended n-notation as:

[4.5] (%(B,x,y) V %(B,y,z) V (,x,z),{ [P]/})

The transitivity expression for the predicate P represented by

[4.5] could be expanded to additional predicates by adding elements to the

replacement set for B . In general, the property of transitivity could

be represented for all predicates in the data base which are transitive by

simply including the H-clause template of [4.5] in the data base with a

replacement set for 8 containing all transitive predicates. Similarly,

other characteristics of other sets of predicates (such as associativity,

comun1iuiitiativity, etc.) could be represented just as easily. This provides

a capability to include a great deal of useful information in the data

base concerning the predicates of the data base in a very compact manner.

8

5. Substitution Set Number of Base Clauses

It is necessary to establish a numbering convention for substitution

sets in order to provide an exact identification of a n-clause within

the data structure. This numbering system assigns a unique number to the

application of a particular substitution set to a particular literal of

a particular clause. These numbers (referred to as substitution set num-

bers) are used throughout the data structure developed in this paper to

identify the clauses and literals to which data items belong. The sub-

stitution set number has the following forms:

x-y-z ,

where x is a unique number assigned by the system to

a particular clause

y is a relative position of the literal within

clause x (counting from left to right)

and z is a relative number of the particular substitution

set within the set of substitution sets applied to

clause x

For example, consider the following extended H-clause:

[5.1] ((p,x) V (a,y),{S1,S2})

where S1 = [P]/ [Q]' [a]/x [b]/ y

and S2 = [P]/p, [R] , [d,e] x , [a] y

Assume that the clause in [5.1] has been assigned the unique clause

number 10 by the system. Then the substitution set number (SSN) asso-

ciated with the application of substitution set S1 to the literal (p,x)

is 10-1-1 . Correspondingly, the SSN associated with the application of

S2 to the liter (B,y) is 10-2-2

9

By establishing such a numbering convention, the application of a

substitution set to a particular literal has a unique internal representa-

tion. For example, the replacement of p by P in the first argument

position and x by a in the second argument position of [5.1] would

be known to have occurred in the same literal since they both would be

represented by the same unique substitution set number within the data

base. No other substitution represented in the data base will be assigned

the same number thereby making the substitution identifiable. The fact

that substitution sets with different numbers apply to elements of the

same clause is indicated by the first part of the substitution set num-

ber. The second part of the SSN similarly provides a unique identifi-

cation of the literal within a clause to which a particular substitution

set has been applied.

6. Data Structure for Global Representation

In a deductive QA system the most critical operation performed is

unification. Unification is essentially a pattern-matching operation

used to identify clauses of the data base which can be resolved with one

another in an effort to produce a problem solution. Given that the

search strategy has by some means selected the literal upon which it

wishes to unify, several unifications with clauses in the data base may

be attempted (some successfully, other unsuccessfully) before the select-

ed literal can be resolved satisfactorily. Each of these unification

efforts requires a separate invocation of the unification process which

is a large and time consuming program.

In this paper we present an indexing scheme to eliminate the need

for repetitive calls of the unification process for the same selected

literal. This indexing scheme is structured such that all unifiers for

10

a particular selected (input) literal will be produced in one call to the

unification process. Information is organized in this data structure so

that unification action can be taken without having information presented

concerning the entire clause involved. If unification is successful with

a literal of a particular clause, information is available as to where the

entire clause may be found.

The general data base is partitioned into disjoint subsets with a

separate segment for literals of differing degrees. The data base descrip-

tion that follows represents a standard data base format which is applicable

to all the independent subsets of the data base. (See Appendix A for a

sample representation of clauses stored in a data base partition).

6.1 Index Level

The top level of the data structure is the Index Level. The Index

Level contains an entry for each of the n argument positions in the asso-

ciated n-tuple. Each of these n entries contains a pointer for each

of the three types of data items which may appear at a particular argument

position of a clause (placeholder variable, free variable and function

letter). These pointers indicate the location of the list of all the en-

tries of a particular item type which have occurred at a specific argument

position.

6.2 Placeholder Variables

The placeholder variable portion of a specific argument position of

the data structure consists of the set of unique constants (or predicate

letters in the first argument position) which have occurred as a member

of a substitution set for any literal of degree n at that argument pos-

ition. Each entry contains the constant value itself and for each

11

separate occurrence of the constant in a unique substitution set, the

substitution set number in which the constant appeared. Consider the

following extended n-clause:

[6.2.1] ((,x), {[P]/B, [a,b]/x})

The placeholder variable portion of the data base for the second

argument position of this n-tuple might be

a 1-1-1

b 1-1-1

where 1-1-1 is the unique substitution set number assigned the applica-

tion of the substitution set in [6.2.1] to the template in [6.2.1].

6.3 Free Variables

The free variable portion of the data structure is similar to the

placeholder portion. For each argument position within an n-tuple of a

specific degree, a separate entry is made for each unique free variable

that occurs. Accompanying each entry is a list of the unique substitution

set numbers in which this variable appears as a free variable. For exam-

ple, consider the following literal:

[6.3.1] ((B,x,y),{{[P]/B, [a]/y},{[Q]/B, [b]/y}}) .

The corresponding free variable entries for the second argument of

literals of degree two might be as follows:

x 2-1-1

2-1-2

where 2-1-1 and 2-1-2 are the unique substitution set numbers assigned

to the application of the substitution sets in [6.3.1] to the template in

[6.3.1].

12

6.4 Function Letter

The third type of basic data base entry is the function letter entry.

Each function letter entry consists of two items; the function letter it-

self and a pointer to another data structure identical in format to the

basic data structure describing the arguments of the function. For exam-

ple, consider the following extended n-clause:

[6.4.1] ((8,f(g(x)),y),{[P]/B, [a,b]/x})

The corresponding function letter entry for the second argument pos-

ition would appear as follows:

function letter entry

arg #2 f

r- -- Index Level

larg #1 -A- .A

Data structure I function letter entry
for arguments of I g

the function f I

L--,------

Index Level

larg #1 A A

I placeholder entry

Data structure I a 3-1-1
for the arguments I

of the function Ib 3-1-1
letter g

L

NOTE: -A = null pointer

13

The number 3-1-1 in the placeholder entry is the unique substitution

set number assigned by the system to the application of the substitution

set in [6.4.1] to the template in [6.4.1]. Note that the occurrence of

a new Index Level entry defines a new level in the recursive definition

of the data structure. The null pointers (_A_) present in the place-

holder and free variable positions of the first level entry in.[6.4.2]

are caused by the absence of any free or placeholder variables.in the

substitution set for the first argument position of the function. f.

Similar reasons cause the null pointers in the Index Level entry for the

arguments of the function g

7. Global-Parallel Unification

The majority of the work which must be performed in a QA system using

a theorem proving approach, is based upon the principle of resolution

(basically a pattern matching operation). Robinson [15] developed an algo-

rithm which successfully adapted the principle of resolution to automatic

theorem proving (see Chang and Lee [4] for a more detailed description).

The unification algorithm described below is an adaptation of the Fishman-

Minker algorithm [8](which is based on Robinsons algorithm), adapted in

order to allow it to handle parallelism in unification and to work efficient-

ly on the particular data structure described in this paper. In a QA system,

the single most frequently used function of the system is the unification

algorithm. As a result, efforts have been made at optimizing the efficiency

of the unification process [1, 2, 10, 16]. What we have tried to do in this

paper is to describe an efficient unification algorithm which can work with

a large data base and by working with the special data structure can per-

form unification in parallel across all clauses of the data base.

14

The usefulness of the data structure (described in Section 6) to our

unification algorithm results from the partitioning that it performs on

the data items. The data items have been divided into three clases: place-

holder variables, free variables, and function letters. Furthermore, this

division has been performed at each argument position within each n-tuple

partition of the data base.

7.1 Basic Properties of Unification

The global-parallel unification algorithm makes use of this partition-

ing of the data base items and the following basic properties of unification

to enable it to identify all the literals (and their associated clauses) in

the data base which are unifiable with a specific input clause with only

one application of the unification process. (For clarity, the following

examples are represented in standard first-order predicate calculus form):

1. Two literals in which non-matching constants appear at the

same argument position cannot be candidates for unification.

For example, the two literals

P(a,x), and

P(b,y),

cannot unify regardless of what x and y

are because the constants a and b in the first argument

position can never be made the same.

th
2. Given a literal which has an arbitrary constant in its n-

argument position and a second literal which has an arbitrary

th
function letter in its n--- argument position, the two literals

can never unify regardless of the remainder of each literal.

For example, the two literals,

P(a,x,f(x),g(y)),

P(a,x,b,g(y)),

15

can never unify since the third argument

entries b and f(x) can never be made the same.

3.a Two literals in which non-matching function letters occur in

the same argument position can never unify.

.b Additionally, literals with matching function letters in the

same argument position can unify only if none of conditions

1 through 3.a holds for any of the arguments of the two func-

tions. For example, the two literals,

P(x,f(y),k) , and

P(x,g(y),k) ,

cannot unify because the function letters f and g in the

second argument position do not agree. In addition, the two

literals

P(x,f(g(h(a))),z) , and

P(b,f(g(h(b))),z) ,

cannot unify because the second argument positions are not the

same since the constants a and b do not agree and can never

be made to agree.

4. Unification can only occur between literals of the same degree.

7.2 The Unification Process

Consider now the data structure we have developed in view of these

basic rules. We have divided the data base into disjoint subsets forming a

separate subset for each set of literals of degree n .. By considering

only elements of a particular subset during unification, we have assured

ourselves that we will consider for unification only literals of the same

degree and that we will consider all literals of the same degree. Recall

16

that for all literals of the same degree we have partitioned, by argument

position, the elements of the entire data base into placeholder variables,

free variables and function letters.

Suppose that a particular literal upon which we want to unify (termed

the input literal) is also represented in such a form. Then, by virtue of

the data structure, while searching for a unifier for the input literal,

all literals within the data base which will unify with the input literal

and the most general unifier associated with each unifying clause will be

found. This is achieved by keeping track at each argument position of the

substitution set number-pairs (one substitution set number from both the

input literal and the data base item) which have not violated any of the

conditions set forth in rules 1 through 3.

For example, suppose we are examining the second argument position

during a particular unification process. If the input literal representa-

tion indicates that the constant b is a value which may be substituted

in the second argument position in the input literal (with an associated

substitution set number of 1-1-1) and the data base indicated that the

constant b can be substituted in argument position two for substitution

set numbers 5-1-1, 10-1-2 and 15-1-3, then a valid substitution has

been found for the substitution set number-pairs (1-1-1, 5-1-1), (1-1-1,

10-1-2) and (1-1-1, 15-1-3). The fact that a valid substitution for

these pairs has been found will be recorded in a data area internal to the

unification process (we term that area the mgu set). The fact that a valid

substitution entry has been found at this argument position will be indicated

to subsequent argument positions by the presence of the mgu set for the par-

ticular substitution set number-pair (SSN-pair). If in the example just cited

17

one of the SSN-pairs with a valid entry of b just found had not produced

a valid entry at a previously processed argument position, this would have

been indicated by the absence of a mgu set for the particular SSN-pair.

Unification is performed in parallel across the entire data base one

argument position at a time. When processing at one argument position is

complete, a check is made of the SSN-pairs which are still candidates for

unification and those, and only those, SSN-pairs are considered at all

future argument positions for possible unification. When all argument pos-

itions have been processed, the SSN-pairs not eliminated from consideration

represent the unifiable clauses and the associated mgu sets represent the

most general unifiers.

7.3 Unification Algorithm

Unification is achieved at a particular argument position by unifying

only between the particular subsets (placeholder variables, free variables,

function letters) which might possibly produce valid unifiers. The general

unification algorithm, modified to work with clauses represented in extended

n-notation using the data structure just described consists of a set of

subroutine calls. One of the particular subroutines is called depending

upon the type of sets between which unification is being attempted. It is

assumed that the variables in the template of the input literal have been

standardized apart from all variables occurring in the data base. The sub-

,routine of the unification algorithm can be outlined as follows:

a) Unify data base placeholder variables and input literal

placeholder variables

Compare the two sets element by element. When the sets are

both ordered alphabetically, the comparison, which is in fact

a set intersection of the two sets, becomes a simple process.

18

Where there is an element match, consider the cross-product of

the two sets of substitution set numbers listed under both the

data base and input entries. If the SS-number pair satisfied

unification criteria in all previous argument positions pro-

cessed (indicated by a current mgu entry for the SSN-pair) but

not for this argument position, make an entry in the mgu for

this argument position indicating the placeholder variable match

found. If a previous unifier for this argument position has

been found, indicating in this case that the intersection of two

placeholder variable sets has produced more than one common

element, this additional entry should be added to the already

current mgu. If no mgu exists for an SSN-pair this indicates

that at some previous argument position unification between the

two 1-clauses represented by the SSN-pair was found to be im-

possible. Therefore, the placeholder variable match just found

should be ignored.

b) Unify data base placeholder variables and input literal

free variables

Each free variable being considered for unification will auto-

matically allow the substitution of any placeholder variable

for it (unless the free variable has already previously been

restricted - see Section 7.4). Therefore, this subpart of the

unification process is quite straight-forward. The cross prod-

uct of the SS-numbers of each placeholder variable and each

free variable are formed and the corresponding entries made into

all current mgu's as was described in (a).

19

c) Unify data base free variables and input literal placeholder

variables

This operation is identical to that described in (b).

d) Unify data base free variables and input literal free variables

Again, each element of these two sets automatically provides for

valid unification, regardless of which variable is substituted

for which (again assuming that neither free variable has previous-

ly been restricted). Arbitrarily one variable is chosen to be

substituted for the other and the entries for the global mgu are

generated identically to that described in Section (a).

e) Unify data base free variables and input literal function letters

Each free variable in the data base can have as a legal substitu-

tion an arbitrary function provided that the variable does not

occur in the function (again assuming the free variable has not

been restricted). Therefore, inclusion of all possibilities of

function letters being substituted for all free variables is made

in the mgu sets which are still current for this argument position.

f) Unify data base function letters and input literal free variables

This operation is identical to that described in (e).

g) Unify data base function letters and input literal function letters

No unification for a particular argument position can be achieved

by inspecting two function letters; only entries which might unify

can be identified. This is achieved by comparing the two sets of

function letters element by element. When these sets are in alpha-

betical order this comparison, which is in fact a set intersection,

becomes a simple process. When a match is found, this indicates

20

that the two argument positions agree at least to the function

letter, but no more can be told. The entire unfication algo-

rithm must now be recursively called to process the argument

sets of the two functions to determine if they can contribute

unifiable sets to any mgu. Upon return from the recursive call

of the unification process, the processing of the two function

letter sets continues.

Note that no searching for unifiers is performed between elements of

placeholder sets and elements of function letter sets. Such unifiers do

not exist and comparing items from these two sets in search of possible uni-

fiers would be a waste of time. We are able to avoid such useless process-

ing due to the manner in which we have structured the data base. By iso-

lating the various types of entities at each argument position into dis-

joint subsets, such non-productive searches can be avoided by never process-

ing the entities of the two sets against one another.

It should be noted that the input literal to global parallel unifica-

tion is an element of an extended n-clause and therefore may have more

than one substitution set attached to it. Thus global parallel unification

is actually performing unification globally across the entire data base for

a set of similarly structured input literals.

7.4 Indirect Restriction of Free Variables

Most unifications which are performed will include the unification of

a free variable with either a placeholder variable or a function letter.

Such a unification has the effect of placing an induced restriction on the

free variable concerned for unification at all future argument positions

and for all argument positions previously processed. In effect, the free

21

variable in question can no longer be considered a free variable for the

duration of this specific unification.

For example, consider the following two literals:

[7.4.1] ((B,x,y),{[P]/B, [b]/y})

[7.4.2] ((6,u,z),f[P]/B, [a]/u, [b]/z))

The free variable x in argument position 2 of [7.4.1] must be re-

stricted to the constant a in order to allow the literals to unify at

argument position 2.

Problems may occur in such cases when the newly restricted free variable

occurs at another argument position in the same clause. Care must be

taken to assure that previous restrictions made will be taken into account

in unification attempts later in the same SSN-pair, and unifications made

at previous argument positions which were accepted as valid must be re-

checked for validity and changed if necessary.

For example:

[7.4.3] ((a,x,y,x),{[P]/B,[b,c,d]/y})

[7.4.4] ((,u,u,v),{[P]/B, [a,b,c]/u, [c,d,e]/v})

a. in the second argument position, x in [7.4.3] is restricted

to the set of constants [a,b,c] by the placeholder variable u

in [7.4.4].

b. in the third argument position, u and y are restricted to

the set [b,c] (the set containing the common elements of the

substitution sets for the two placeholder variables). This in

turn affects the previous restriction on x which must be

changed to be the same as the new restriction for u

c. the fourth argument position restricts x in [7.4.3] to the

22

set [c,d,e]. However, in view of previous restrictions made

upon x , both x and v must be restricted to the element

c (the common element of the previous restriction of x by

u and the new restriction imposed by v). However, in order

for the two literals to unify, x and u must unify in argu-

ment position 2. Therefore, the previous restriction on u

([b,c]) must also be changed to the element c (the same as

the restriction on x). This also causes y in argument

position 3 of [7.4.3] to be restricted to the element c

since u and y must agree in the third argument position.

Note that if the last element of the substitution set for [7.4.4] had been

[d,e]/v instead of [c,d,e]/v , unification would have been impossible

between the two literals even though unification at each argument position,

independent of all other argument positions, is possible. This reduced

substitution set for v would have caused a restriction on x in step (c)

of the previous description that would have made x inconsistent with re-

strictions placed on it in step b

Whenever a free variable is restricted by the unification algorithm

presented in 7.3, an entry is made in the mgu set associated with the

particular unification indicating which variable has been restricted and

how it has been restricted. A check must be made to see if this previously

unrestricted variable has been used at a previous argument position. If

so, the effects of the newly placed restrictions must be reflected in all

previously processed argument positions using this variable.

Prior to using any free variable in the unification algorithm a check

is made to see if the variable has previously been restricted. If it has,

23

the information stored in the mgu set at the time of its restriction is

used by the unification algorithm. This will have the effect of changing

the variable type of the restricted, free variable to the type variable

dictated by the restriction made, and thus affect the subroutine called

by the unification algorithm. For example, if a unification between two

free variables was about to take place and one of the free variables was

found to have been restricted to a placeholder variable, the unification

operation that would take place would be that of unifying a placeholder

variable and a free variable (subroutine b) even though the two variables

originally presented to the algorithm were free variables.

Note that the operations described here dealing with how the unifica-

tion algorithm handles restricted free variables are the parallel of the

operations that are performed in the composition of unifiers in a conven-

tional approach to unification. What we refer to as the mgu set contains

substantially the same information as a most general unifier in a standard

system.

8. Advantages and Disadvantages of Global Parallel Unification

There are several advantages for the approach to unification presented

in this paper. The most obvious one is the globalness of the unification

itself. Once the problem-solving portion of the system decides which

particular problem is to be solved next (which particular literal is to be

unified upon) it is possible to find all operators (unifiers) in the entire

data base in one operation. It is never necessary to return to the data

structure to produce another unifier for the same literal. If a previously

produced unifier for a particular literal does not lead to a satisfactory

problem solution, one can simply select another unifier from the set prev-

iously produced.

24

Along the same line, by having all the unifiers for a particular

literal available at one time it is possible to select the best unifier

(most likely to produce a problem solution) and use that unifier first.

This gives the added capability of choosing the best clause from the

data base to resolve with the selected literal. This will of course

require the development of heuristics to determine what are the charac-

teristics of a good unifier (see Section 9.2). By having all unifiers

available at the same time, it will be possible to vary the criteria for

determining the best unifier based upon the state of the partially solved

problem at the particular instant required and the characteristics of the

input literal itself.

The unification process. is position independent: that is, the unifi-

cation at any particular argument position does not depend upon unifica-

tion being performed on any preceding argument position. Arguments may

be processed in any order, and this order may be changed arbitrarily from

one unification to the next. Advantage could be taken of this capability

by determining the order in which arguments are to be processed based

upon the characteristics of the data contained in the various argument

positions of the input literal and the data base items. Since each suc-

cesive argument position can continue for consideration in the global

mgu set only those SSN-pairs which have produced valid mgu set entries

at the previously processed argument positions, a judicious ordering of

the argument positions could have a great effect upon limiting the number

of candidates considered at each state of unification. Heuristics could

be developed to aid in selecting the order in which argument positions

should be processed (see Section 9.1).

It is important to note that this approach to providing a data

25

structure and a formal mechanism for parallel unification is independent

of any other aspect of a question-answering system. Therefore, any refine-

ments of resolution, such as those presented in Chang and Lee [4], is

still applicable and the various possible search strategies [11] developed

can still be used.

The global parallel approach to unification has several potential dis-

advantages. Given a system in which there is not a great deal of similar-

ity between the clauses of the data base, the complex data structure re-

quired by this system could significantly increase the amount of overhead

required to store the clauses. This could impact heavily on the amount of

storage area required to store the items of the data base. Similarly, the

processing capabilities of global parallel unification would be wasted if

each step of the unification were working in effect on individual unique

literals rather than on a batch of syntactically similar ones. The pro-

cessing requirements for such a system could quickly escalate to many times

that which would be required to process the data in a conventional OA sys-

tem. The point at which the characteristics of the data base indicate that

a global parallel approach would be wasteful is unknown. Research in this

area must be conducted to determine where such a breaking point is and how

likely it is that data bases exhibiting characteristics useful to a global

parallel approach exist.

Given that there are data bases which could be more efficiently hand-

led in a global parallel manner, there still is a question as to whether

or not such a scheme provides an overkill capability. That is, must such

an exhaustive approach be used in order to achieve the increased efficiency.

For example, if a specific problem can be solved by unifying the input

literal with only those data base clauses which are unit clauses, is it

26

necessary to take the time to find all other unifiers of lengths greater

than one? Possibly an approach should be taken where unification is per-

formed globally for all unifiers of a specific clause length with the

shortest being done first. This would then, of course, require a separate

pass through the applicable portions of the data base for each unification

performed. This is another area in which some experimental testing should

be done to determine the tradeoffs in the various approaches.

9. Heuristics

As was mentioned in the previous section, global parallel unification

requires the introduction of some new heuristics in order to guide the

unification process to a reasonably efficient solution. In this section

some suggestions for heuristics are presented and a tentative evaluation

of their usefulness is made.

9.1 Argument Selection

Global parallel unification is done globally across the entire data

base one argument position at a time. Any SSN-pairs which do not success-

fully unify at any one particular argument position cannot possibly pro-

duce a valid unifier at a later point. All SSN-pairs which produce a

valid unifier at the first argument position processed.must be included

for consideration at all subsequent argument positions until they fail to

produce a valid unifier. In order to reduce the number of candidate SSN-

pairs at each argument position, it would be beneficial to develop a

heuristic which would be capable of ordering the argument positions for

processing such that those producing the least number of unifiable SSN-

pairs would be processed first.

There are several approaches which could be taken to achieve some

level of this capability by using the characteristics of the data stored

27

in the data base. These approaches differ as to the computational com-

plexity required to compute the heuristic value, the amount of additional

storage media required to store the data used by the heuristic, and the

confidence that can be placed in the derived heuristic values.

For example, argument positions could be selected for evaluation

based on an upper bound on the total number of possible substitution set

number pairs which could be generated by unifying a particular argument

position of the data base with the associated argument position of the

input literal. This upper bound could be computed in several ways. The

total number of unique substitution set numbers occurring under the argu-

ment positions of the data base and input literal could simply be multi-

plied. This would give a very rough upper bound which could be computed,

cheaply. The information required to compute this heuristic value re-

quires minimal storage space. The confidence level of such a heuristic

may be questionable due to the very gross characteristics of the measure

supplied.

A more sophisticated approach for generating an upper bound on the

number of possible SSN-pairs which takes advantage of the characterists

of function letter and placeholder variable items could be developed.

First of all, this limit need not include in the number of generated

SSN-pairs any consideration for possible unifications between function

letter and placeholder variables since such unifications are impossible.

Additionally, the manner in which items from these two sets interact with

themselves have characteristics which can reduce the total possible num-

ber of generated SSN-pairs. For example, given two placeholder variable

or function letter sets one consisting of n unique entries and the other

consisting of m unique entries, it is possible to find no more than min-

imum (m,n) occurrences where the two sets have 'identical entries. Addi-

28

tionally if the input clause has no specific entry with more than h

associated substitution sets and the data base has no specific entry with

more than k associated substitution sets, then the matching of any two

particular entries from the two sets can produce no more than k-h SSN-

pairs. Since we have already found that no more than minimum (m,n)

matching entries can be found, there can be no more than minimum (m,n).k.h

valid SSN-pairs produced by intersecting the two sets.

A heuristic measure taking advantage of the properties of placeholder

variable and function letter sets noted above could provide a much more

restrictive upper bound on the number of unifiable SSN-pairs which can be

generated at any argument position. This would especially be true in

cases where the size of one function letter (or placeholder variable) set

is expected to be much larger than the other, as one would expect to find

in comparing a global data base with the elements of an input literal.

This heuristic requires the storing of a significant amount of information

in the data structure in order to compute the heuristic value. The calcu-

lation of the heuristic value will also require a significant amount of

additional computation at the time of unification.

9.2 Unifier Selection

The purpose of finding a unifier in the course of a deduction is to

provide an operator which is capable of reducing the problem (eliminating

a literal) being solved. Depending upon the structure of the unifier and

the data base clause to which it applies, the resulting reduced problem

may have widely varying characteristics. As presented in this paper, data

base information used in the unification process is based solely on'the

literals of a clause and contains no specific information concerning the

clause with which the literal is associated. Such information could be

included in the data base and characteristics of the clause (such as clause

length, complexity, etc.) could be used in determining the most desirable

29

unifier to select. For example, given two unifiers to select from, if one

involves using a unit clause from the data base, it is the most desirable

to use since the problem solution step involving a unit clause will reduce

the problem to be solved (eliminate a literal) without introducing
addi-

tional subproblems. This characteristic can be generalized for any unifier

regardless of the length of the associated clause; the shorter the unify-

ing clause, the fewer literals the resultant clause will
have.

Other characteristics of the clause may also be meaningful. For

example, the particular literal upon which one has successfully unified

may have such a simple structure that it appears to be the natural can-

didate to be selected as the operator for the problem to be solved. How-

ever, the remainder of the clause may have characteristics (such as being

extremely complex) that make the clause as an entity a poor selection as

a problem reducer. Since any use of a unifier developed will cause the

inclusion of all other literals in the same clause into subsequent pro-

blems to be solved, it would be worthwhile to be able to investigate the

clause-oriented ramifications of using a unifier before actually using it.

The unifier itself, independent of the clause it is associated with,

also contains information which is useful in selecting the most desirable

unifier. The more variables of the literal template which are specifi-

cally known (variables for which there appears a specific substitution

set of constants), the fewer free variables there will be at the next

step of the problem solution. The fewer free variables at the next step,

the less difficult the subsequent unification steps will be and the smaller

the number of subsequent unifiers that will be produced. This provides

the rationale for investigating a heuristic which enables unifiers which

30

leave the fewest variables of the template literal unspecified to be

expanded first.

Similarly, consideration should be given to the number of substitu-

tions in the unifiers which will cause the introduction of additional

function letters into the solved clause. Solving problems which have

function letters as arguments requires recursive calls of the unifica-

tion process for each level of function complexity (function nesting).

The more complex the function, the more complex the unification process

will be for solving the resultant clause. An attempt should be made to

defer processing unifiers which will introduce new functions at argument

positions; the more complex the functions introduced, the longer the use

of the unifier should be deferred. This helps to keep from introducing

unnecessarily complex problems in an attempt to solve fairly simple prob-

lems especially if a simpler solution is readily available.

10. Conclusion

In this paper we have presented a new approach to handling large data

bases in a QA system environment. We have presented a modification to the

unification procedure which can produce all the unifiers for the entire

data base for a specific input literal in parallel. We have defined a

data structure to handle our parallel search requirements in a powerful

and efficient manner.

We are now at a point where significant experimentation should be

undertaken in an effort to aid in formalizing and verifying our concepts.

Various trade-offs in terms of time and space must be explored. The ques-

tion of creating hybrid systems, combining the concepts of a totally paral-

lel system and that of a standard QA system, should be explored. New areas

31

of capability using the data base structure and the concept of parallelism

should be investigated. Such a task is presently being conducted at the

University of Maryland (1) in attempting to use semantic information within

a system structured such as this.

The problem of determining which approach to take is unresolved. To

date, we have developed what we believe to be some promising techniques

for structuring and manipulating large data bases in a QA environment.

The fact that these techniques are independent of the search strategy

employed in the host QA system leaves a wide latitude of areas of possible

application.

Work being conducted by J. McSkimin, G. Wilson, G. Augustson and
J. Gishen under the direction of Dr. Jack Minker.

32

Acknowledgment:

The authors would like to extend their appreciation to Gerald Wilson

whose advice and comments provided a significant contribution to the

preparation of this paper. They also thank Jim McSkimin for his suggestion

that f-representation be extended to include the predicate name.

33

REFERENCES

1. Baxter, L.D., "An Efficient Unification Algorithm," Technical

Report CS-73-23, University of Waterloo, Ontario, Canada.

2. Boyer, R.S. and Moore, J.S., "Sharing of Structure in Theorem-
Proving Programs," in Machine Intelligence 7, Edinburgh Univer-
sity Press, 1972, p. 101-116.

3. Burstall, R.M., "A scheme for indexing and retrieving clauses for
a resolution theorem-prover," Memorandum: MIP-R-45, Department of
Machine Intelligence and Perception, University of Edinburgh,
December, 1968.

4. Chang, C.L. and Lee, R.C.T., Symbolic Logic and Mechanical Theorem-
Proving, Academic Press, New York, 1973.

5. Coles, L.S. et al., "Design of a Remote-Access Medical Applications
of Remote Electronic Browsing," Final Report, Contract NLM-69-13,
SRI Project 7963, Stanford Research Institute, Menlo Park, California
(November 1969).

6. Darlington, J.L., ""Theorem-Proving and Information Retrieval,"
In Machine Intelligence 4, Edited by Meltzer, B. and Michie, D.,
American-Elsevier Publishing Co., New York, 1969, p. 173-182.

7. Fishman, D.H., Experiments with Resolution Based Question-Answering
Systems and a Proposed Clause Representation for Parallel Search.
Ph.D. Thesis, Computer Science Department, University of Maryland,
College Park, Maryland, 1973.

8. Fishman, D.H. and Minker, J., " n-Representation: A Clause Repre-
sentation for Parallel Search," Internal Report, University of
Maryland, November 1973.

9. Green, C.C. and Raphael, B., "The Use of Theorem Proving Techniques
in Question-Answering Systems," In: Proc.-1968 ACM National Con-
ference, Brandon/Systems Press, Princeton, N.J., 1968, p. 169-181.

10. Hoffman, G.R. and Veenker, G. "The Unit-Clause Proof Procedure with
Equality," Computing Vol. 7, 1971, p. 91-105.

11. Kowalski, R., "Search Strategies for Theorem-Proving." In: Meltzer,
B. and Michie, D. (Eds.) Machine Intelligence 5, American-Elsevier,
New York, 1970, p. 181-200.

12. Minker, J., Fishman, D.H., and McSkimin, J.R., "The Maryland Refuta-
tion Proof Procedure System (MRPPS)" TR-208, Computer Science Center,
University of Maryland, College Park, Maryland, December 1972.

34

13. Minker, J., Fishman, D.H., and McSkimin, J.R., "The Q* Algorithm -
A Search Strategy for a Deductive Question-Answering System," Proc.
3rd Int'l. Joint Conference on Artificial Intelligence, StandforU,
California, August 1973.

14. Minker, J., McSkimin, J.R. and Fishman, D.H., "MRPPS - An Interactive
Refutation Proof Procedure System for Question-Answering," TR-228,
Computer Science Center, University of Maryland, College Park, Mary-
land, February 1973

15. Robinson, J.A., "A Machine-Oriented Logic Based on the Resolution
Principle," J. ACM 12, 1 (Jan., 1965), p. 23-41.

16. Robinson, J.A., "Computational Logic: The Unification Algorithm,"
In: Meltzer, B. and Michie, B. (Eds.), Machine Intelligence 6,
Edinburgh University Press, 1971. p. 63-72.

17. Sussman, G.J. and McDermott, D.V., "From PLANNER to CONNIVER - A
Genetic Approach," Proc. FJCC, AFIPS Press, Montvale, N.J., 1972,
1171-1179.

35

Appendix Sample Data Structure

In order that the reader might better comprehend how the various

elements of the data structure fit together, we present in this appendix

the data structure that would be required to store two fairly simple

clauses. These clauses contain only first and second degree literals.

Therefore, the corresponding data structure has only two partitions; one

for literals of degree one, and one for literals of degree two. In order

that we. can reflect the occurrence of substitution set numbers in the data

structure, we have assumed that the system-assigned unique clause number

for clause [A.1] is 1 and for clause. [A.2] is 2 .

36

Sample Clauses in Extended 1-Notation

[A.(1] apxy) V (psy,z) a, p) X. p

SPQ]/ lM/P la,b]/ lICY/z

[A.2] ,fu)) V ,tf(h(w)) , [R]/ [P]/ [ab]/ ce]/ti

Data Structure For Literals of Degree 1

Index Level

.A . I [-A_ = Null Pointer]

Placeholder Variable Entries

Function Letter Entries

Index Level Entry (for arguments of
function f)

Placeholder Variable Entry

a 2-1-1

b 2-1-1 37

Data Structure for Literals of Degree 2

Index Level

/ A A (AC _ = Null Pointer)

F2 A-.

F3 FL3 Placeholder Variables

M .1-2-2 a 1-1-1 a 1-1-2

p 1-1-1 a 1-2-2 b 1-1-2

P 1-1-2 b 1--11 c 1-1-1

P 2-2-1 b 12-2i c 1-2-2

Q 1-2-1 c 1-1-1 d 1-1-1

Q 1-1-2 c 1-2-1 e

c 2-2-1

d 1-2-1

e 1-2-1

e 2-2-1

Free Variables

F2 x 1-1-2 F3 z 1-2-1

38

Function Letter Entry

FL f

Index Level Cfor arguments of function f)

Function Letter Entry

h

Index Level Entry (for arguments of
function h)

Free Variable Entry

w 2-2-1

39

